Name	
Period	Date

Rotation: Worksheet 1 Constant Angular Velocity

- 1. The wheel of an automobile is spun so that its *angular position* vs. *time* is given in the data table below.
- a. Plot the following data for the automobile wheel.

t(s)	$\theta(rad)$
1.0	1.53
2.0	2.15
3.0	2.55
4.0	3.10
5.0	3.55
6.0	4.18
7.0	4.74
8.0	5.25

- b. Draw a line of best fit and use this line to write an equation for this rotation.
- c. Determine the angular displacement in 12.5 *s* for this wheel.
- d. How long will it take the wheel to have an angular displacement of 5.00 rad?
- e. Graph the *angular velocity* as a function of *time* and then use the graph to determine the angular displacement from t = 1.5 s to t = 4.25 s.

Rotation: Worksheet 1 Constant Angular Velocity

- 2. The wheel of a truck is spun so that its *angular position* vs. *time* is given in the data table below.
- a. Plot the following data for the truck wheel.

t(s)	$\theta(rad)$
0	0
1.5	4.71
3.0	9.42
4.5	14.14
6.0	18.85
7.5	18.85
9.0	12.57
10.5	6.29
12.0	0

- b. In your own words, describe the motion of this truck wheel from t = 0 s until t = 12 s. Be sure to include the direction of rotation.
- c. Calculate the total angular displacement of the truck wheel.
- d. What is the average angular velocity of the truck wheel? What does this mean?

- 3. A pottery wheel has a radius of 20. *cm* and an angular velocity of 150 *rpm* (revolutions per minute).
 - a. Convert this angular velocity to rad/s.
- b. What is the linear velocity of a point on the outside of the wheel?

- 4. A drill bit has an angular velocity of $1767 \frac{rad}{s}$.
 - a. Convert this to $\frac{rev}{min}$.
- b. How many revolutions will the drill bit make in a half hour of continuous use?

5. A rotating, circular ride at a local park is 12 m in diameter and rotates with a constant angular velocity of $1.5 \frac{rad}{s}$. Three sisters sit on this ride, Mary 2.0 m from the center, Goh 4.0 m from the center, and Wround (The W is silent!) 6.0 m from the center. All three children strangely have exactly the same mass; 42 kg (Don't Panic!).

a. Draw a force diagram for each child.

- each child?
- b. What is the angular velocity of c. What is the linear speed of each child?

- d. What is the centripetal acceleration of each child?
- e. What is the force of static friction acting on each child?

Rotation: Worksheet 1 Constant Angular Velocity

- 6. A ball of radius 0.25 m rolls at a constant velocity without slipping. It takes the ball 10. *s* to travel 5.0 *m*.
 - mass of the ball?
 - a. What is the velocity of the center of b. What is the linear velocity of a point on the outside of the ball?

- c. What is the angular velocity of the ball?
- d. What is the linear velocity of a point half way from the center?

- e. Suppose you made a f. Through what angular mark on the outside of the ball. How far would that mark move in the 10.s?
- displacement does the ball rotate in the 10.s?
- g. How long does it take the ball to fully rotate once?