\qquad
\qquad

Rotation: Worksheet 1 Constant Angular Velocity

1. The wheel of an automobile is spun so that its angular position vs. time is given in the data table below.
a. Plot the following data for the automobile wheel.

$t(s)$	$\theta(\mathrm{rad})$
1.0	1.53
2.0	2.15
3.0	2.55
4.0	3.10
5.0	3.55
6.0	4.18
7.0	4.74
8.0	5.25

b. Draw a line of best fit and use this line to write an equation for this rotation.
c. Determine the angular displacement in 12.5 s for this wheel.
d. How long will it take the wheel to have an angular displacement of 5.00 rad?
e. Graph the angular velocity as a function of time and then use the graph to determine the angular displacement from $t=1.5 \mathrm{~s}$ to $t=4.25 \mathrm{~s}$.

$$
\omega(\mathrm{rad} / \mathrm{s})
$$

2. The wheel of a truck is spun so that its angular position vs. time is given in the data table below.
a. Plot the following data for the truck wheel.

$t(s)$	$\theta(\mathrm{rad})$
0	0
1.5	4.71
3.0	9.42
4.5	14.14
6.0	18.85
7.5	18.85
9.0	12.57
10.5	6.29
12.0	0

b. In your own words, describe the motion of this truck wheel from $t=0 \mathrm{~s}$ until $t=12 \mathrm{~s}$. Be sure to include the direction of rotation.
c. Calculate the total angular displacement of the truck wheel.
d. What is the average angular velocity of the truck wheel? What does this mean?
3. A pottery wheel has a radius of $20 . \mathrm{cm}$ and an angular velocity of 150 rpm (revolutions per minute).
a. Convert this angular velocity to $\mathrm{rad} / \mathrm{s}$.
b. What is the linear velocity of a point on the outside of the wheel?
4. A drill bit has an angular velocity of $1767 \mathrm{rad} / \mathrm{s}$.
a. Convert this to $\mathrm{rev} / \mathrm{min}$.
b. How many revolutions will the drill bit make in a half hour of continuous use?
5. A rotating, circular ride at a local park is 12 m in diameter and rotates with a constant angular velocity of $1.5 \mathrm{rad} / \mathrm{s}$. Three sisters sit on this ride, Mary 2.0 m from the center, Goh 4.0 m from the center, and Wround (The W is silent!) 6.0 m from the center. All three children strangely have exactly the same mass; 42 kg (Don't Panic!).
a. Draw a force diagram for each child.
b. What is the angular velocity of each child?
d. What is the centripetal acceleration of each child?
e. What is the force of static friction acting on each child?
6. A ball of radius 0.25 m rolls at a constant velocity without slipping. It takes the ball 10. s to travel 5.0 m .
a. What is the velocity of the center of mass of the ball?
b. What is the linear velocity of a point on the outside of the ball?
c. What is the angular velocity of the ball?
d. What is the linear velocity of a point half way from the center?
e. Suppose you made a f. Through what angular mark on the outside of the ball. How far would that mark move in the $10 . s$?
displacement does the ball rotate in the $10 . s$?
g. How long does it take the ball to fully rotate once?

